
Sekar Anup Chander
Manufacturing Science and

Instrumentation Division,
CSIR-Central Scientific Instruments Organisation,

Sector-30C, Chandigarh 160030, India;
Academy of Scientific and Innovative

Research (AcSIR),
Ghaziabad, Uttar Pradesh 201002, India

e-mail: anup@csio.res.in

Ashutosh Mukherjee
RWTH Aachen University,

Aachen,
North Rhine-Westphalia 52056, Germany

e-mail: ashutosh.mukherjee@rwth-aachen.de

Vhatkar Dattatraya Shivling
Intelligent Machines and Communication

Systems Division,
CSIR-Central Scientific Instruments Organisation,

Sector-30C, Chandigarh 160030, India;
Academy of Scientific and Innovative

Research (AcSIR),
Ghaziabad, Uttar Pradesh 201002, India

e-mail: vvdatta@csio.res.in

Ashish Singla1
Department of Mechanical Engineering,

Thapar Institute of Engineering and Technology,
Patiala, Punjab 147004, India

e-mail: ashish.singla@thapar.edu

Enhanced Euler–Lagrange
Formulation for Analyzing Human
Gait With Moving Base Reference
Euler–Lagrange’s formulation is known for its systematic and simplified approach to deriv-
ing dynamics of complex systems. In order to apply the existing formulation to human gait
dynamics, the base reference frame must be assumed as an inertial reference frame. Con-
ventionally, the ankle joints or the hip joints are regarded as base reference frames during
the stance and swing phases of human walking. As these joints are non-inertial in nature
during actual locomotion, this assumption could result in inaccurate calculation of
lower-limb joint torques and forces. Therefore, in this paper, an existing Euler–
Lagrange-based formulation originally developed for fixed-base robotic manipulators is
considered and modified to accommodate the movement of the base reference frame with
respect to an inertial frame of reference defined outside the human body. The applicability
of the modified formulation is studied, implemented, and validated using three standard and
publicly available gait datasets covering the phases of walking and running. The joint
torques obtained using the proposed dynamic model are compared with reference
torques by calculating the mean absolute error values and visually through Bland–
Altman plots. The obtained joint torque values and plots indicate a close agreement with
published torques, thereby validating the accuracy of the proposed dynamic model. The
robust formulation implementation makes it a valuable resource for researchers in this
field, offering a reliable framework for gait analysis and the design of lower-limb prosthet-
ics or exoskeletons. [DOI: 10.1115/1.4065520]
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Introduction
The study of human gait provides greater insights into the health,

balance, and functional ability of an individual. Though studies
show that human walking is the simplest form of gait [1], the com-
plete locomotion process involves detailed coordination and control
among multiple body segments, muscles, and neural control
systems. The gait is assessed both through visual observation and
the combination of motion capture systems along with force
plates. An important parameter used for the assessment of human
dynamics is the estimation of joint torques during the gait. They
provide valuable quantified information required for assessing
patients. The joint torque values are of great use in rehabilitation,
and also toward design of lower-limb prosthetics or exoskeleton.
Consequently, this necessitates the development of inverse dynam-
ics models of human gait.

Human gait models and humanoid robots (HR) share similarities
in segmented body structure, joint dynamics, stability, and control
strategies. Models developed for one are often used for the other.
Deep learning models like reinforcement learning (RL) have been
used to balance the lower body of the HR with 12 degrees-
of-freedom [2], using symbolic inverse kinematics and the RL
model instead of direct joint torque estimation. Similarly, in the
case of human walking long-short term memory neural-network
models were trained to estimate joint torques from Electromyogra-
phy (EMG) and joint angles during walking [3]. In this paper, the
authors emphasize an analytical method for calculating joint
torques based on kinematicmotion data and estimated body-segment
parameters of the human body. The proposed analytical model could
serve as a benchmark for neural networkmodels and can enrich them
by integrating physical insights into neural network training.
One of the common analytical methods of modeling human

walking or a biped is the inverted pendulum (IP) method [4]. IP
models assume the entire body rotates about the ankle joint and
that the motion occurs primarily in the sagittal plane, thereby mod-
eling by simplifying the complexity of actual human walking.
Spring-loaded inverted pendulum models were developed to over-
come the limitation of a simple inverted pendulum model, where
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the distance between the hip and pivot is not constant [5]. A nonlin-
ear inverted pendulum model for uneven deformable terrain was
presented by Gora et al. [6]. The IP models primarily addressed
the stability and energetics of human gait or biped. In order to
understand the specific roles of individual joints and muscles in
human motion, multi-segment models were developed.
In one of the multi-segment models of human gait, the body was

represented as a combination of 13 rigid segments comprising the
head, torso, pelvis, upper arms, forearms, thighs, shank, and feet
[7]. The dynamics of each segment were determined using force-
balance equations. Similarly, joint torques derived using 2D and
3D models were studied using the free-body-segment method to
understand the difference in torque values of both models [8]. Con-
sidering the motion of the lower limb alone, the swing phase of the
leg was modeled as a compound pendulum in the work by Maillar-
det [9]. In the same work, the motion of the legs is considered in the
sagittal plane, and the hip is assumed to move with uniform velocity
in the direction of locomotion. The joint reaction forces and muscle
moments were calculated using this assumption. In addition to treat-
ing the lower limb as individual segments, viscoelastic parameters
were incorporated for the hip, knee, and ankle joints to explore
their correlation with the gait pattern [10]. Though the multi-
segment models were employed to compute the joint torques,
they were tailored to each type of segment model. Describing the
human body as a mechanical multi-body system enables us to estab-
lish its equations of motion using conventional formulations of used
for modeling robotic manipulators, such as the Newton–Euler
(N–E) or the Euler–Lagrange (E–L) formulation methods.
Both N–E and E–L methods use Denavit–Hartenberg (D–H)

parameters to formulate the kinematic model of human gait. N–E
formulation for dynamics involves both forward and backward
recursive equations, with intricate vector cross-product terms. The
equations of motion of each segment are derived in steps using
the d’Alembert principle and set of equations, describing the rela-
tion between moving segments with respect to base coordinate
frame. Alternatively, E–L formulation is an energy-based approach,
known for its simple and systematic nature [11]. With this formula-
tion, the system dynamics are simplified into a single procedure,
independent of the number of segments considered or the type of
coordinates used [12].
In previous studies using E–L formulation for human gait,

Al-Shuka et al. [13] utilized the formulation to derive the equations
ofmotion for biped robots. The foot was assumed to be in full contact
with the ground, and therefore considered as inertial reference frame
during single support phase. The human motion was considered to
behave like a closed-chain mechanism during the double support
phase. Xiang et al. [14] used E–L formulation to analyze a spatial
digital human model with various kinematical and physical con-
straints. They utilized the same formulation to compute ground reac-
tion forces (GRF), ensuring the overall equilibrium of the human
model. Furthermore, apart from its application in human gait model-
ing, the E–L formulation was utilized to derive dynamic equations
for the coupled human-exoskeleton system [15]. Velandia et al.
[16] presented their research where Euler–Lagrange equations
were used to model the exoskeleton. Their work also highlighted
that E–L equations enable the convenient design of robust
controllers.
A commonly used E–L formulation for robotic manipulators is

presented in the work by Fu et al. [11]. The motion equations
from this formulation yield explicit state equations for gait dynam-
ics, enabling the design of advanced control strategies in the
joint-variable space. Tutsoy and Barkana [17] presented their
research where an under-actuated manipulator was modeled using
E–L technique and represented the system in state-space for
control purposes, addressing the stability and chaotic regions of
the manipulator. E–L formulation is usually expressed in the form
of matrix mathematics, thereby allowing direct computational
implementation. In the previous papers where E–L formulation
was used, the researchers assumed the base frame to be an inertial
reference frame, with respect to which the dynamic equations are

derived. In gait dynamic studies using E–L formulations, it can
be observed that the foot is considered as the reference base
frame during the stance phase. Conversely, during the swing
phase, the hip is assumed to be the base frame of reference for deriv-
ing the dynamic equations. Since the base frame on the hip is not
inertial in nature during actual human gait, the movement of hip
frame with respect to an inertial frame needs to be compensated
in the derivation of joint torques using E–L formulation.
The concept of moving base frame has been discussed in the case

of humanoids or satellites. In this case, a new 6DOF joint is used in
between the fixed and floating base [18]. Recursive N–E algorithm
formulation was used to derive the dynamic equations. In the case
of floating-base humanoids, where the base is not fixed to the
ground, the robot’s control was treated like an optimization
problem [19]. Lagrange multipliers are used for finding local
minima and maxima of a function subject to constraints, whereas
the E–L formulation is used to derive the equations of motion of a
system. However, Lagrange multipliers are used for computing
GRF during human gait [20]. It can be noticed that E–L formulations
have been utilized for fixed frame systems in the context of robotic
manipulators, while they are applied with the assumption of the
moving base frame being inertial in the case of human motion.
However, a comprehensive Euler–Lagrange formulation for a
moving base human motion has not been addressed in the existing
literature.
Therefore, in order to utilize the advantages of E–L formulation

in developing the dynamic model of human walking, in this work,
the hip joint is considered as the reference base frame, and its
motion with respect to some other inertial frame outside the body
is included in the dynamic model so as to accommodate its
motion parameters. During the development of the model for
human walking, insights from the dynamic model of robotic manip-
ulators with a moving base by Wronka and Dunnigan [21] were
incorporated. In order to validate the proposed model for different
phases of human gait, three different standard and published data-
sets were used. The datasets comprised marker data of lower-limb
joints, GRF data, and center-of-pressure (COP) marker data,
recorded at different time stamps or percentage values of the gait
cycle. The major contributions of the current work are as follows:

• Modification of existing manipulator dynamic model to
accommodate for moving base frame: The E–L formulation-
based manipulator dynamics model is adapted such that the
base reference frame on the hip joint is transformed into a non-
inertial frame, so that the model can be applied for human gait
analysis.

• Validation using experimental and simulated datasets: The
new modified framework is substantiated through validation
using three standard gait datasets, pertaining to both walking
and running. The joint torques obtained are compared with ref-
erence torques by means of Bland–Altman plots and by calcu-
lating the mean absolute error (MAE). Therefore, the results
are analyzed both visually and quantitatively.

The paper is structured as follows. In “Mathematical Modeling of
Human Gait” section, the mathematical modeling of gait along with
the kinematic and dynamic aspects is detailed. “Results and Discus-
sion” section describes the validation of the proposed model using
three datasets of human gait available in the literature. The results
after simulation using the proposed model are presented using com-
parison plots and Bland–Altman plots. “Conclusion” section con-
cludes the findings from this research work.

Mathematical Modeling of Human Gait
Planar Model of Human Gait. In this paper, human motion is

considered in the sagittal plane, where the lower limb is represented
as a rigid three-link serial manipulator with the thigh, shank, and
foot as the rigid links as shown in Fig. 1(a). They are assumed to
be connected by means of three rotational joints—hip, knee, and
ankle joints when analysis of a single leg is considered. As only
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the sagittal plane motions are analyzed, the system has three inde-
pendent rotational degrees-of-freedom. In order to establish the
relation between adjacent links or segments, the coordinate
frames are affixed to the joints connecting the links or segments.
The coordinate frames are established such that

(a) zi−1-axis is along the axis of motion of ith joint;
(b) xi-axis such that it is normal to zi−1-axis;
(c) yi-axis is such that the right-hand coordinate system is

completed.

In this paper, the z0-axis is considered to lie along the axis of rota-
tional motion of the hip joint. The motion of all other segments of
the leg is considered with respect to the hip joint coordinates, which
is assumed to be the base frame for the system. The procedure fol-
lowed for assigning the link coordinate system is as per the D–H
representation outlined in the book by Fu et al. [11]. After assigning
the coordinate system, the D–H parameters are used to formulate the
forward kinematics of the system (Table 1). The D–H transforma-
tion arm matrix A relating the ith frame and (i − 1)th frame is
given by

i−1Ai =

cos θi −cos αi sin θi sin αi sin θi ai cos θi
sin θi cos αi cos θi − sin αi cos θi ai sin θi
0 sin αi cos αi di
0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦
(1)

where
θi = joint parameter from the xi−1 -axis to the xi -axis about zi−1
di = distance from xi−1 to xi measured along zi−1
αi = angle from zi−1 -axis to the zi -axis about xi
ai = distance from zi−1 -axis to the zi-axis about xi

As the joints of the human leg are assumed to be a sequence of
single-axis rotation joints [22], θi is the joint parameter that
changes as link i moves with respect to link (i − 1). These joint
parameters are linearly dependent on the joint angles for the
lower limb. The joint angles can be calculated using the law of
cosines from the marker data [23]. Another technique to calculate
the joint angles is using the absolute angle of a specific limb
segment [12]. In this paper, the segment angles are calculated
first, which are then used to calculate the joint angles. The angle
of the segment in space with respect to horizontal axes is given by

θsegment = tan−1
yi−yj
xi−xj

( )
(2)

where (xi, yi), (xj, yj) are the end-point coordinates of the segment
under consideration. From the segment angles which are absolute in
the spatial reference system, the joint angles are calculated between
two adjacent segments. The hip, knee, and ankle joint angles respec-
tively can be calculated using the following equations:

θhip = θ21 (3)

θknee = θ21 − θ32 (4)

θankle = θ32 − θ54 + 90 deg (5)

where θ21 is the thigh segment angle, θ32 is the shank segment
angle, and θ54 is the slope of the line joining marker-4 and
marker-5 as shown in Fig. 1(a). Another input that goes into defin-
ing the link parameters is the link length, which is calculated using
the algebraic distance formula between two points (markers). With
the data of joint coordinates and joint angles, their time derivatives
are calculated if the velocity or acceleration values are not provided.
A commonly used numerical technique to compute the time deriv-
atives is the central-difference method.

Dynamics of the Human Lower-Limb Model. The Euler–
Lagrange-based dynamic formulation used in this study to obtain
the dynamics of the lower limb is inspired by the work of Fu
et al. [11]. For the dynamic formulation introduced ahead, the hip
joint frame is always considered as the reference base frame.
After obtaining the transformation matrices using the joint angles
and segment lengths, the joint moments are calculated. The

Fig. 1 (a) Four-link model of the leg and (b) movement of the lower limb with respect to inertial reference frame

Table 1 D–H parameter table of the leg model in the sagittal
plane

Joint i θi αi di ai

1 θ1 0 L1 0
2 θ2 0 L2 0
3 θ3 0 L3 0
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additional parameters that go as input in the formulation of dynamic
equations are the segment masses, center-of-mass location of each
segment, and respective moments of inertia. The segment masses
are estimated as a percentage of the total body mass [24,25]. The
location of the center of mass (COM) from the proximal joint is
also estimated as a percentage of segment length [26]. These
segment parameters are now used as input in the formulation of
dynamic equations for calculating the joint torques.
Furthermore, the dynamic formulation introduced ahead makes

some assumptions in order to simplify the problem. These are:

(a) The gait, which actually is a three-dimensional motion is
assumed to be a two-dimensional motion happening only
in the sagittal plane.

(b) All segments are assumed to resemble cylindrical rods with
negligible diameter, i.e., the moment of inertia of each
segment about its axis is negligible, while the other two prin-
cipal moments of inertia are equal to each other.

(c) The friction and other dissipative elements present within
each joint are assumed to be negligible.

(d) The inertia of the upper body is assumed to be much higher
than the inertia of the lower limbs, i.e., the motion of the
lower limbs is assumed to not affect the motion of the
upper torso at all.

(e) The hip is always considered to be the (non-inertial) refer-
ence base frame with respect to which the kinematics and
the dynamics of the lower limb are computed and whose ori-
entation at all times remains the same with respect to the iner-
tial frame of reference. The illustration of the frames is
shown in Fig. 1(b).

(f) The trajectory of the hip joint and its derivatives are not con-
sidered as part of the generalized coordinate vector, instead,
they are considered to be model parameters.

In the equations presented, scalars are denoted in small-caps and
italicized font, vectors in small-caps, bold, and italicized font, and
matrices in capital and bold font. As E–L formulation is used to
derive the gait dynamics, the equation to derive the joint torques
is given by Eq. (6)

τi =
d

dt

∂L
∂q̇i

( )
−
∂L
∂qi

, ∀ i = 1, 2, . . . , n (6)

where the Lagrangian function “L” is the difference between total
kinetic energy (K) and total potential energy (P) of the system

under consideration. The generalized coordinate “qi” in this study
is the joint angle “θi”. To compute the kinetic energy of the
lower limb, it is required to compute the joint velocity “vi” of
each segment. If Ori is the position of a point in link “i” with
respect to inertial frame (the inertial coordinate frame being
labeled as “0” and the base coordinate frame being labeled as
“h”), then the velocity of the point in a segment can be expressed
as in Eq. (7)

0vi =
d

dt
(0ri) (7)

which can be re-written as Eq. (8)

0vi =
d

dt
( 0Ah

hAi
iri) (8)

where hAi is the homogenous transformation matrix describing the
position and orientation of the ith link with respect to the reference
base frames, whose elements are function of θi and iri is the posi-
tion of the point on the ith link with respect to the frame of reference
distal to the link. 0Ah is the homogenous transformation matrix
describing the translation of the hip joint frame with respect to
the inertial frame given by

0Ah =

1 0 0 hx
0 1 0 hy
0 0 1 0
0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (9)

where hx and hy are the X and Y position coordinates of the hip
joint, with respect to the inertial frame. The homogenous transfor-
mation matrix of any ith segment will depend on the joint parame-
ters of all the segments between itself and the reference base frame.
Using the product rule of derivative, Eq. (8) can be expanded as

0vi = 0Ȧh
hAi

iri + 0Ah

∑i

j=1

∂ hAi

∂θj
θ̇j

iri (10)

where iṙi = 0 and d
dt (

0Ah) =0 Ȧh, θj is joint parameter for
j ∈ (1, 2, . . . . ., i).
In the current study, as the lower limb is considered to have only

revolute joints, the time derivative of the arm matrix can be
expressed as

∂ i−1Ai

∂θi
=

− sin θi −cos αi sin θi sin αi sin θi −ai sin θi

cos θi − cos αi cos θi sin αi cos θi ai cos θi
0 0 0 0

0 0 0 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

=

0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

cos θi −cos αi sin θi sin αi sin θi ai cos θi
sin θi cos αi cos θi − sin αi cos θi ai sin θi

0 sin αi cos αi di

0 0 0 1

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

=Q i−1
i Ai

(11)

where

Qi =

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎡
⎢⎢⎣

⎤
⎥⎥⎦ for rotary joint [12] (12)

Kinetic Energy of the Lower Limb. The next step after finding
the joint velocity of each segment is to calculate the kinetic energy

of each segment. The kinetic energy dKi of a point in link “i” with a
differential mass dm can be expressed as

dKi =
1
2
(ẋ2i + ẏ2i + ż2i )dm (13)

dKi =
1
2
Tr(vivTi )dm (14)
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where Eq. (14) can be expressed in the form of trace of a matrix by
using the velocity vector of the ith link.
Substituting vi from Eq. (8) in Eq. (14), the total kinetic energy of

the complete lower-limb system is derived by summing energies of
all segments, which can be expressed as

K =
∑n
i=1

1
2
Tr( 0Ȧh

hAi Ji hAi
T 0Ȧ

T
h )

+
∑n
i=1

∑i

a=1

Tr( 0Ȧh
hAi Ji UT

ia
0AT

h )θ̇a

+
1
2

∑n
i=1

∑i

a=1

∑i

b=1

Tr( 0AhUia JiUT
ib

0AT
h )θ̇aθ̇b

(15)

where Ji =
�
(iri)(irTi )dm is the inertia matrix of link “i” and n is the

total number of links, Uij =
∂ hAi

∂θj
, is a matrix which defines the rate

of change of iri as θj changes relative to the base coordinate frame
[11,21]. In other words, Uij is the effect of motion of joint “J” on

link or segment “i”. Similarly, Uijk =
∂Uij

∂θk
will also be another

matrix describing inter-link interactions.

Potential Energy of the Lower Limb. The total potential
energy of the lower limb is derived by summing the individual
potential energies of each segment

P =
∑n
i=1

−mig(
0Ah

hAi
iri) (16)

where g= (0 0 −g 0)T is the gravity row vector with respect to iner-
tial coordinate system and “g” is the acceleration due to gravity. The
inertial frame of reference is assumed to have its Z-axis pointing
upwards (as in Fig. 2(a)).
From Eqs. (16) and (17), the Lagrangian function, L = K − P is

given by

L =
∑n
i=1

1
2
Tr( 0Ȧh

hAi Ji hAi
T 0Ȧ

T
h )

+
∑n
i=1

∑i

a=1

Tr( 0Ȧh
hAi Ji UT

ia
0AT

h )θ̇a

+
1
2

∑n
i=1

∑i

a=1

∑i

b=1

Tr( 0AhUia JiUT
ib

0AT
h )θ̇aθ̇b

−
∑n
i=1

−mig( 0Ah
hAi

iri) (17)

After calculating the
∂L

∂θ̇i
,

∂L
∂θi

terms, the final joint torque “τi”
due to the motion of lower limb, without taking into consideration
any external forces is given as

τi =
∑n
j=i

Tr(0Ȧh
hAj JjUT

ji
0AT

h ) + 2
∑n
j=i

∑j

r=1

Tr( 0ȦhU jr JjUT
ji

0AT
h )θ̇r

+
∑n
j=i

∑j

r=1

∑j

s=1

Tr(U jrsJjUT
ji)θ̇r θ̇s +

∑n
j=i

∑j

r=1

Tr(U jr JjUT
ji)θ̇r

+
∑n
j=1

mjg(
0Ah

hAj
jrj) (18)

Torque at Joints Due to Ground Reaction Force. During the
swing phase, the joint torques are calculated from the kinematic and
structural parameters of the leg alone. However, in the case of the
stance phase of gait, the body experiences an additional external
force when it comes in contact with the ground. This force is

called GRF. The direction of GRF acting on the body during differ-
ent instances of the stance phase is represented by Fig. 2(a). The
magnitude of GRF during the same period is shown in Fig. 2(b).
The GRF in the figure is plotted from dataset-3 [27] used in this
study for validation of the proposed gait model. The magnitude
and direction of the GRF vector are plotted to represent GRF
during the stance phase.
A force plate is commonly used in gait analysis to measure the

GRF. The relative position of the GRF vector with respect to the
joint axis is considered to calculate the resultant joint moment
[22,28,29]. The measured ground reaction force vector is projected
from the Cartesian space to the joint space using the distance of the
projected GRF vector from the respective joint center (riarm), as
shown in Fig. 3. The total force applied by the foot on the ground
is distributed throughout different points of the surface of the
foot. However, for representation of the GRF as a vector, it is
assumed to act at a point called COP.
To include the torques generated at the joints due to the ground

reaction force, Eq. (18) can be written as

τtotal−i = τi + (riarm × FGRF) (19)

Hence, Eq. (19) can be written compactly in matrix form as

τ = D(θ)θ̈ + h(θ, θ̇) + c(θ) + Fha(θh, θ̇h)θ̇

+ Fhb(θh, θ̇h, θ̈h) + τGRF (20)

where

D =

D11 · · · D1n

..

. . .
. ..

.

Dn1 · · · Dnn

⎡
⎢⎣

⎤
⎥⎦, a n × n inertial acceleration-related

symmetric matrix
h=[h1, h2, . . . . . . , hn]T , a n × 1 nonlinear Coriolis and centrifugal

force vector

Fig. 3 Representation of GRF vector along with COP and
moment arm

Fig. 2 (a) GRF during the stance phase and (b) the pattern of
GRF during the stance phase

Journal of Mechanisms and Robotics JANUARY 2025, Vol. 17 / 011006-5



c=[c1, c2, . . . . . . , cn]T , a n × 1 gravity loading force vector
Fha = [F1, F2, . . . . . . , Fn]T , a n × 1 vector representing the

inertia-like generalized forces induced by the hip motion on the
lower limb

Fhb =

F11 · · · F1n

..

. . .
. ..

.

Fn1 · · · Fnn

⎡
⎢⎣

⎤
⎥⎦, a n × nmatrix representing the Corio-

lis and centrifugal-like forces induced by the hip and the lower-limb
motion on the lower limb.
τGRF = [r1arm × FGRF , r2arm × FGRF , . . . , rnarm × FGRF]T ,

a n × 1 vector representing the torque experienced at the lower-
limb joints due to ground reaction force
θ=[θ1, θ2, . . . . . . , θn]T , a n × 1 vector for generalized

degrees-of-freedom.
The effect of moving base ( 0Ah) can be observed in the final

equation of the model. The derived model is used to simulate the
gait dynamics, and is validated using three different datasets. The
summary of the datasets used for validating the model is shown
in Table 2.
The schematic diagram of the proposed model is shown in Fig. 4.

The model was developed in MATLAB
® environment.

Results and Discussion
In this section, the results of the study comparing the calculated

joint torques obtained from the proposed model and the joint
torques provided in the standard human gait datasets [12,27,30]

are presented and discussed. Both the torque values for a particular
joint are plotted in a single graph and compared visually. In addition
to these plots, Bland–Altman plots are used to compare the two
torques. Bland–Altman plot, or difference plot, is a graphical
method to describe agreement between two quantitative measure-
ments, with the use of limits of agreement [31]. In literature, this
plot is found to be used to compare actual and estimated joint
torques. The statistical limits are calculated using the mean and
standard deviation of the differences between the two sets of
torque values under comparison. The final graph is a scatter plot
(XY) with the difference between the two torque values on the
Y-axis, which is plotted against the mean of the two torques on
the X-axis. The obtained results are discussed for each dataset.

Dataset-1: Hora et al. Dataset. The dataset provided in the
work by Hora et al. [27] is the data of a walking individual in the
sagittal plane. The numerical values of body mass, vertical GRF,
joint marker coordinates, and COP coordinates are provided. The
derived joint angles and joint moments are also provided in the
dataset. In the work, the joint moments were calculated using link-
segment equations, which act as the reference values against which
our dynamic model is validated. The joint marker data at different
frames are used to plot the stick diagram, as an illustration of the
data in Fig. 5.
The joint torque values of the hip, knee, and ankle joints of both

the calculated and dataset values are plotted with respect to stance
percentage.

Table 2 Details of the dataset used for validation

S. no. Name of the dataset Gait type, phase, data source, format Data type Data given (units)

1 Hora et al. dataset [27] Walking, stance phase, experimental,
.csv format

Anthropometric
data

• Body mass (68.5 kg)
• Thigh length (mm), shank length (mm), and ankle

height (mm)
Temporal data • Stance % (101 rows)

• Frame time (0.00661 s)
Kinematic data • Hip–knee–ankle marker coordinates (m)

• Joint angles (deg)
• GRF data (N)
• COP coordinates (m)

Joint moments Net hip, knee, and ankle moments (N-m) calculated
using link-segment modeling

2 Winter. dataset [12] Walking, swing–stance phase,
experimental, .csv format

Anthropometric
data

• Body mass (56.7 kg)
• Thigh length (cm)
• Shank length (cm)
• Foot length (cm)

Temporal data • Frame (106 frames)
• Frame rate (69.9 frames/s)

Kinematic data • Rib cage, hip, knee, ankle, metatarsal, toe marker
coordinates (m)

• Segment angles (deg)
• Joint angles (deg)
• GRF data (N)
• CoP coordinates (m)

Joint moments Net hip, knee, and ankle moments (N-m)

3 Van den Bogert and De
Koning [30]

Running, simulated, .zip format Anthropometric
data

• Segment mass (kg)
• Moment of inertia (kg-m2)
• COM to proximal joint (% segment length) of thigh,

shank, and foot segment
Temporal data • 6001 frames

• Sampling interval of 0.1 ms
• Heel strike at sample-3001

Kinematic data • Hip, knee, ankle, toe position coordinates (m)
• Joint angles (deg)
• GRF data (N)
• COP coordinates (m)

Joint moments Net hip, knee, and ankle moments (N-m)
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Through visual inspection of the torque plots in Fig. 6, the resem-
blance in trend between the calculated and reference values can be
observed. As the authors have used the central-difference method
for calculating the velocity and acceleration values, the first two
and last two values of the data are zero, i.e., the values at stance per-
centages of 0, 1, 99, and 100 are zero and for the same instances the
comparison is not performed. At the 21st stance value, a difference

of 7.8 Nm is observed in the peak values of the torques for the hip
joint. At this phase of stance, there is not much difference in the cal-
culated and reference torque values for the knee and ankle joints.
During the later phase of stance, i.e., at the 89th stance value,
there is a difference of 10.9 Nm in hip torque values, while the dif-
ference in knee torques and ankle torques are 2.02 Nm and 0.34 Nm
respectively at this stance.
To further evaluate the difference in calculated and reference

joint torques, Bland–Altman plots were generated for each anatom-
ical joint as shown in Fig. 7. The bias value (mean difference line) is
−1.77, 0.005, and 0.001 for hip, knee, and ankle joints respectively.
The bias is near zero, thereby suggesting that no systematic bias
exists between the calculated and reference torques. The plots
also indicate that the majority of data points are clustered
between the limits of agreement, which is ±1.96% times the stan-
dard deviation of the differences. Though the Bland–Altman plot
of knee and ankle torque appears to show an increasing trend as
the reference torque increases, it can be observed from the plot
that the difference in torque values is within the limit of 0.02 and
0.01 for knee and ankle respectively.

Dataset-2: Winter Dataset. This prominent gait data are
sourced from the work by Winter [12]. The dataset includes 2D
walking kinematic and force plate data. The kinematic data
include marker data of the rib cage, hip, knee, fibula, ankle, heel,
metatarsal, and toe while the force plate data include the GRF

Fig. 4 Schematic diagram of formulation of the proposed gait model

Fig. 5 Stick diagram of the stance phase from dataset-1

Fig. 6 Comparison of calculated and reference torques of dataset-1
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data along with COP data for every frame provided. The illustration
of the walking subject is shown in Fig. 8.
Upon initial simulation of the proposed model using dataset-2, it

was noticed that the calculated torque values contained undesired
high-frequency noise for which an appropriate low-pass digital
filter was used. For example, the calculated hip torque includes a
lot of noise as shown in Fig. 9.
The selection of type of filter and its related parameters are not

considered in the scope of this study. However, for the purpose
of comparison, the noisy data pertaining to this dataset was
smoothed using the “smoothdata” function of MATLAB

®, which
returns a moving average of the calculated data using a fixed
window length that is determined heuristically. The joint torque

after performing the smooth function is compared, which is
plotted as shown in Fig. 10.
The initial visual inspection in Fig. 11 indicates that the calcu-

lated and the reference torques match in terms of trend. The
values provided in the dataset are “frame” wise, with 106 frames.
Differences in joint torque values can be observed in the initial
few frames, which can be attributed to the calculation of velocity
or acceleration terms using the central difference method. Consider-
ing the difference at peaks, a difference of 8.75 Nm in hip torque,
and 7.14 Nm in knee torque is observed at the 28th frame. A differ-
ence of 3.5 Nm is observed in knee torque at the 37th frame. The
Bland–Altman plots for examining the model performance for
this dataset are shown in Fig. 11.
The bias value (central horizontal line) is 1.01, 0.06, and 0.001

for hip, knee, and ankle torques respectively. The data points are
spread around the centerline and mostly lie between the limits of
agreement. Though data points are sloping upward from left to
right in the case of knee and ankle torques, the difference is only
around 0.01 and 0.005 for knee and ankle torques respectively.

Dataset-3: Van den Bogert and De Koning Dataset. The
dataset contains files generated by the direct dynamic simulation of
running, sourced from the work of Van den Bogert and De Koning
[30]. The inertial properties of the 2D musculoskeletal model used in
the simulation along with position data of hip, knee, ankle, and toe
are given in the dataset. The illustration of lower limb movement per-
taining to this dataset is shown in Fig. 12. The GRF data along with the
x-coordinate of COP are also given. Additionally, the joint moments
calculated using link-segment modeling are given in the dataset,
which is used as the reference values for comparing joint torques.
The joint torques of the calculated and reference torque value for

this dataset are plotted in Fig. 13.
The joint torques are plotted for every “frame,” starting from the

3001st frame when the heel strike occurs. The comparison plots
show an overall correspondence between the torque values obtained
through the proposed model and the reference dataset. The graph
indicates that the calculated hip torque and knee torque have anom-
alies near the 3147th frame. In the paper by Van den Bogert and De
Koning [30], where the current dataset was used, the type of filter
and the parameters to avoid these anomalies were discussed. The
cutoff frequencies ranged from 3.0 Hz to 94.3 Hz, varying for
force and torque measurements, and further differing across the
hip, knee, and ankle joints. As the authors have presented the
joint torque results for the cutoff frequency of 15.1 Hz, a
second-order Butterworth filter with the same cutoff frequency
was used in the present study. The comparison plots after the appli-
cation of the digital filter are shown in Fig. 14.
The burst in the hip torque of Fig. 13 is actually an artificial noise

introduced in the simulation data by Van den Bogert and De Koning

Fig. 7 Bland–Altman plot of calculated and reference torques of dataset-1

Fig. 8 Stick diagram of swing–stance phase from dataset-2

Fig. 9 Calculated hip torque without filtering
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[30]. Similarly, as illustrated in Fig. 14, a similar burst is evident in
the hip torque data presented by Van den Bogert and De Koning
[30] at a cutoff frequency of 15.1 Hz. In the current research
work, the authors did not include optimal filtering as a component
of the study; rather, solely utilized the dataset for validating the
model.
The calculated torque values after filtering are used for compar-

ison in the Bland–Altman plot for this dataset, as shown in Fig. 15.
It can be observed that the data points are evenly distributed

around the bias line and mostly within the limits of agreement.

This is indicative of a strong overall agreement of the proposed
model for this dataset. The bias has near-zero values for hip,
knee, and ankle torques, which also suggests the minimal bias
between the torque values.
In addition to the Bland–Altman plots, the MAE and mean error

(ME) were also calculated to assess the accuracy of the proposed
model. The values of the mean absolute error and the mean error
are tabulated in Tables 3 and 4 respectively.
From the above table, it can be noticed that the MAE in estimat-

ing hip joint torque is relatively higher in dataset-1 and dataset-2.
Upon visual inspection, such as in Fig. 6 for dataset-1 [27] and
Fig. 10 for dataset-2 [12], it can be observed that in some instances
the estimated hip torque values do not match with reference values.
This could be due to the difference in numerical estimation of joint
velocity and acceleration values. It was observed through calcula-
tions that the MAE in case of hip torque of Hora et al. [27]
reduced to around 3.00 N-m when the initial and final values
were not compared.
The acceleration values of these datasets (dataset-1 and dataset-2)

may be filtered initially, whose information is not provided along
with the dataset. The selection of digital filter parameters also con-
tributes to the final calculated values. Also, for these two datasets,
the parameters like segment masses, segment lengths, and location
of center of mass were estimated in this paper using a particular
body-segment parameters estimation technique. This technique
may differ from the actual one used in the original dataset papers.
The values of these parameters vary with respect to the estimation
models adopted. The effect of different body segments’ parameter
estimation models on the calculation of lower-limb joint torques

Fig. 10 Comparison of calculated and reference torques of dataset-2

Fig. 11 Bland–Altman plot of calculated and reference torques of dataset-2

Fig. 12 Stick diagram of stance phase from dataset-3
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Fig. 13 Comparison of unfiltered-calculated and reference torques of dataset-3

Fig. 14 Comparison of filtered-calculated and reference torques of dataset-3

Fig. 15 Bland–Altman plot of calculated and reference torques of dataset-3

Table 3 MAE of joint torques (N-m)

Dataset no. Hip joint Knee joint Ankle joint

1. Hora et al. [27] 4.17 1.58 0.86
2. Winter [12] 2.30 1.02 1.06
3. Van den Bogert and De Koning [30] 0.02 0.02 0.00

Table 4 ME of joint torques (N-m)

Dataset no. Hip joint Knee joint Ankle joint

1. Hora et al. [27] −0.87 1.09 −0.85
2. Winter [12] 1.01 0.55 0.53
3. Van den Bogert and De Koning [30] 0.00 −0.01 0.00
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was previously reported by Rao et al. [32]. In the case of dataset-3,
the segment mass value, center-of-mass location with respect to the
proximal joint, and moment of inertia values were provided in the
dataset itself. Therefore, the difference between calculated and ref-
erence torques in this case was minimal. Overall, the time-series
plots, Bland–Altman plots, and error value calculation across the
three datasets collectively indicate that the proposed dynamic for-
mulation proves effective in estimating joint torques during
human motion.

Conclusion
In this study, the Euler–Lagrange-based dynamic formulation for

robotic manipulators was modified such that the reference base
frame is non-inertial so that the formulation can be used for
human gait analysis as well. Though the approach is developed
for human gait in the sagittal plane, the same approach can be
extended to the analysis of human gait in other anatomical planes
too. The developed model was validated with three different data-
sets, which are diverse and cover a wide range of scenarios includ-
ing the stance phase-swing phase of human walking,
simulated-experimental data of gait, and running-walking activity
of humans. In the three datasets reported in the paper, the joint
torques are derived using the Newton–Euler or link-segment
method, whereas the authors have used the modified Euler–
Lagrange method to calculate the same. The near-zero bias
between both approaches validates the proposed approach toward
the estimation of joint torques in human gait. The developed
model holds the potential not only toward understanding of
human gait mechanics but also can contribute to broader biomecha-
nical studies involving prosthetics or exoskeletons.
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