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Abstract

It has become more important than ever to build highly sustainable systems and struc-
tures. One technique to warrant the safety and durability of any structure without over-
engineering the components is to have a continuous health monitoring system that can sense
any alarming peripheral impact which could lead to significant damage at later stages of the
structure’s life. This study aims to predict the loads on an engineering system, more specifi-
cally the weight of the person riding a bicycle. This can then be implemented in operation in
order to, monitor the structural health of static as well as dynamic structures or for model-
based control systems as well.
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1 Introduction

1.1 Motivation

In this study, different machine learning methods for classifying weights/loads have been
investigated. The ability of these methods to generalize their prediction on an unseen
dataset, effectively a modified experimental setup, is a critical factor to judge their perfor-
mance.

FIGURE 1.1: Predictive Maintenance in context of Industry 4.0 and IoT
Image Courtesy: Zonta et. al [1]

This kind of study is very pertinent in predictive maintenance which is playing a major
role in Industry 4.0 [1], where preventive actions are taken instead of acting based on
post-damage evidence [2]. Additionally, this study is invaluable for model-based control
systems, which is widely used for controlling highly non-linear systems like exoskeletons
[3, 4] and quadcopters [5], and for which model parameters need to be accurately
predicted. Instead of depending on classical estimators like the Kalman Filter [3], we can
intelligently predict such model characteristics using classifiers.

1.2 Experimental Setup

Seven hurdles were built with long slender wooden planks and were placed equidistantly 5
meters apart. Two bicycles with 28 inch and 24 inch wheel diameters were used to ride over
these obstacles at a constant vecocity of 10km/hr. A total of six runs were done, three with
each bike for each weight category (65kg, 75kg, and 85kg). The consequent accelerometer
(without acceleration due to gravity) data were recorded with the smartphone secured on the
handlebar of each bike. The data was recorded with a 200Hz sampling frequency and the
RWTH inhouse app Phyphox [6] was used to output the data digitally into .csv files.

For the sake of this paper the data from the 28inch wheel diameter will be referred to as
Bike 1 and the other as Bike 2. Data from Bike 1 was strictly used for training, validation, and
testing of the classifier models whereas the data from Bike 2 was used for making generalized
predictions.
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2 Methods

2.1 Preprocessing

To pre-process the data, four strategies are used, each based on the learnings of the previous,
to arrive at the final strategy that is finally used to pre-process the input raw accelerometer
signal. A visual illustration of the data-preprocessing strategies can be referred to from
Figure 2.1. The raw signal can be seen in Figure 2.2(a) and the pre-processed data can be
seen in Figure 2.2(b).

FIGURE 2.1: Data-Preprocessing Flow

FIGURE 2.2: Acceleration data for 65 Kg weight run passed through all the
data pre-preprocessing steps

The need for the second strategy arises from the lack of raw data for the effective train-
ing of neural networks. Since there is no point of symmetry in the dataset about which
augmentation can be carried out, low-pass filtering of the data was considered. Fast Fourier
Transform plots of the raw data revealed that below 40Hz, there seemed to be a significant
difference in the frequency strengths of the datasets of different weight categories. Thus,
40Hz was chosen as the upper limit for the augmentation process using filtering. Filtering
the dataset at a 10Hz cut-off frequency led to a significant data loss, thus 20Hz was set as
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the lower limit. Finally, the augmented dataset was obtained by filtering the data using a 4th

order Butterworth Low-Pass Filter with cut-off frequencies: 20Hz, 30Hz, 40Hz.
Additionally, feature engineering was also carried out, but using those features for the

Neural networks seemed to decrease its accuracies and SVM was able to perform optimally
using only the average acceleration of the dataset.

2.2 Training

2.2.1 Support Vector Machine (SVM)

The SVM employed here uses a linear kernel to classify the input data into multiple classes
of 65Kg, 75Kg and 85Kg weight categories. This classification decision is made with a one vs
one “ovo” decision function. With this, the function values are proportional to the distance
of the samples to the separating hyperplane. Figure 2.3 depicts the segmentation of the
hyperplane based on the training data with the position of the corresponding prediction
data being superimposed on it.

FIGURE 2.3: Superimposition of the generated SVM Hyperlane with predic-
tion and training input data

2.2.2 Fully connected feed-forward Neural Network (FFNN)

The FFNN used here is a multi-layer perceptron (MLP) with one input layer, three hidden
layers and one output layer with 3 neurons (1 for each weight class category). The hidden
layers use a Rectified Linear Unit (ReLU) activation function, whereas the output layer uses a
Softmax activation function. The Neural Network is compiled with an Adam optimizer and
a sparse Categorical Crossentropy loss function. Early stopping is used to monitor the valida-
tion loss in order to avoid overfitting of the Neural Network model. Furthermore, K-Fold
validation is used to verify the sturdiness of the hence trained Neural Network model.

2.2.3 Convolutional Neural Network (CNN)

CNN is a deep learning algorithm that is able to extract features from the given input data
signifying a much lower pre-processing required as compared to other classification algo-
rithms [7]. CNNs are generally preferred for image/video recognition problems, but can
also be extended to other problems involving continuous data such as time series data (like
in our case). The CNN employed here uses an input array of size (200, 1). It further uses
two convolution 1D layers with 32 and 64 filters respectively to extract the relevant features
from the input data. This convolved data is further processed and passed to the output layer
with 3 neurons. Similar to the feed-forward Neural Network the CNN is compiled with an
Adam optimizer and a Sparse Categorical Crossentropy loss function. Early stopping is used
here as well in a manner similar to the one used in the FFNN.
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3 Results and Discussion

After extracting multiple features from the raw data, the prepared final form of pre-processed
data obtained from Bike 1 was fed into each of the classifier architectures to train and vali-
date them. Accuracy and Loss plots were generated to assess the quality of the models de-
veloped and the K-Fold cross-validation technique was implemented to further determine a
more accurate estimate of model prediction performance. The generalization ability of each
classifier is summarized with the help of the following 3 tools: Confusion Matrix, ROC Curve,
and Classifier Metrics.

3.1 Support Vector Machine

3.1.1 SVM: Generalization

In Figure 3.1(a), it can be seen that the SVM was able to classify each data-set correctly, thus
achieving an accuracy of 100 %.

FIGURE 3.1: Confusion Matrix and ROC Curve for SVM for Bike 2 data

Weight Class Precision Recall F-Score Accuracy
65.0 1.00 1.00 1.00 100%
75.0 1.00 1.00 1.00 100%
85.0 1.00 1.00 1.00 100%

TABLE 3.1: Classification metrics of SVM for Bike 2 data
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3.2 Fully connected feed-forward Neural Network

3.2.1 FFNN: Cross Validation

FIGURE 3.2: Accuracy and Loss for FFNN

In Figure 3.2, the validation loss decays faster than the training loss, which is an indicator
that the model is getting trained optimally.

3.2.2 FFNN: Generalization

FIGURE 3.3: Confusion Matrix and ROC Curve for FFNN for Bike 2 data

Weight Class Precision Recall F-Score Accuracy
65.0 0.71 0.71 0.71 71.4%
75.0 0.83 0.71 0.77 71.4%
85.0 1.00 1.00 0.93 100%

TABLE 3.2: Classification metrics of FFNN for Bike 2 data
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3.3 Convolutional Neural Network

3.3.1 CNN: Cross Validation

FIGURE 3.4: Accuracy and Loss for CNN

In Figure 3.4, the validation loss is at a very low value from the first epoch itself. This can
be attributed to the sufficiently distinguishable input data features coupled with the feature
extraction ability of the CNN.

3.3.2 CNN: Generalization

FIGURE 3.5: Confusion Matrix and ROC Curve for CNN for Bike 2 data

Weight Class Precision Recall F-Score Accuracy
65.0 0.83 0.71 0.77 71.4%
75.0 0.75 0.86 0.80 85.7%
85.0 1.00 1.00 0.93 100%

TABLE 3.3: Classification metrics of CNN for Bike 2 data
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4 Conclusion and Outlook

4.1 Classifiers Comparison

Based on the detailed studies presented in Chapter 3, it can be concluded that the SVM
works best for classifying the weight of a bicycle rider since the algorithm reached a predic-
tion accuracy of 100%. The Neural network models, on the other hand, were unable to attain
such a level of accuracy. Additionally, we can use preparation time as a metric too for com-
parison of the classifiers. SVMs require minimal data pre-processing, and for this particular
case, it was able to give a perfect prediction using only one data feature, so the effort required
in feature engineering was also minimum. On the other hand, the FFNN required the most
amount of data pre-processing and feature engineering and still couldn’t match the accuracy
level of the SVM. Ideally, CNNs also require less data pre-processing effort than FFNNs,
since they have intrinsic feature extraction capabilities, but for this particular case, the CNN
was giving decent predictions only after a significant amount of data-preprocessing of the
time series. So SVMs are a better classifier even when it comes to preparation time.

4.2 Outlook and Future Scope

The limitation of data is a major factor in assessing the performance of the above-presented
Neural networks. SVMs can easily set thresholds for classifying a limited amount of data.
On the other hand, for the Neural networks, the same data needs to be finely pre-processed
to make it distinguishable for proper classification. On the contrary, with abundant data,
the latter two can display improvement in their performance compared to the present case
for the classification problem. Whereas, the SVMs in this case may get confused in setting
the thresholds due to the closeness or in some cases even overlap of feature values in prac-
tical scenarios. Thus, the above conclusion about the comparison of the classifiers can be
objectively drawn only for this particular use case with the given amount of data and a fair
comparison between the classifiers can be made in a future similar experiment where the
available amount of data is much more than the current scenario.
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